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Abstract 

In recent years it has been shown that direct methods 
are capable of solving the structures of small 
proteins. Mukherjee & Woolfson [Acta Cryst. (1993), 
D49, 9-12] have shown that useful phase sets can be 
produced even at 3 A resolution but that the stand- 
ard figures of merit could not distinguish the better 
phase sets from others. They found modified forms 
of the standard figures of merit that could pick out 
better phase sets for 2 A resolution or higher. 
Gilmore, Henderson & Bricogne [Acta Cryst. (1991), 
A47, 842-846] have shown that evaluation of 
the log-likelihood gain, coming from entropy- 
maximization procedures, is also very successful in 
picking out good protein phases sets. A new figure of 
merit is described, based on the expected charactis- 
tics of an electron-density map for a protein, and 
comparisons are made with the other figures of merit 
mentioned above. 

Introduction 

When a set of protein phases is available from a 
method based on isomorphous replacement, anoma- 
lous scattering or a combination of the two then the 
crystallographer can try to interpret the resultant 
map with reasonable confidence that it has some 
meaningful content. In the event that an interpreta- 
tion is unsuccessful then a phase extension and 
refinement process, such as SQUASH (Zhang & 
Main, 1990a,b; Cowtan & Main, 1993), will often 
so improve the map that interpretation becomes 
possible. 

The situation with direct-methods-generated 
phases is very different. Typically 1000 sets of phases 
will be generated and if no figures of merit (FOM's) 
are available to distinguish the better sets from the 
poorer ones then nothing can be done with them. It 
is impracticable to examine each of the maps with a 
view to interpretation or phase refinement and exten- 
sion. Mukherjee & Woolfson (1993) using the direct- 
methods procedure SAYTAN (Debaerdemaeker, 
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Tate & Woolfson, 1988) found it possible to generate 
useful sets of phases for the small protein aPP 
(Glover et al., 1983) even with 3 A data but the 
conventional SA YTAN FOM's were unable to pick 
them out. Mukherjee & Woolfson managed to 
modify the conventional FOM's into a form which 
did select the better phase sets, but only for resolu- 
tions higher than 2 A. These modified FOM s were 
still heavily based on statistical principles and the 
property of a map for a small structure, that fp3dV 
should be maximum, which is not true for larger 
structures. Since aPP has only 36 amino acids, one 
Zn atom and 80 water molecules in the asymmetric 
unit, the conditions applying to small structures are 
just managing to give some discriminating informa- 
tion but it must be expected that any FOM based on 
small-structure properties will fail for any structure 
much larger than this one. 

A successful FOM has been described by Gilmore, 
Henderson & Bricogne (1991) which is based on the 
evaluation of log-likelihood gain, which comes from 
entropy maximization. This was tried on SA YTAN 
sets of phases, with data at 0.98 A resolution, and 
shown to be capable of recognizing sets of phases 
with mean phase error (MPE) less than about 50 °. 
No application to lower resolution phase sets has 
been reported. 

Here we describe our derivation of a new FOM 
which should apply to larger protein structures and 
lower resolutions. 

Theoretical background 

One of the first steps in determining a protein struc- 
ture when an initial map is available is to distinguish 
that part of the cell occupied by the protein from 
that occupied by the solvent. One approach is to use 
the fact that the mean density in the protein region, 
occupied by a more-or-less rigid structure, is higher 
than that in solvent region occupied by mobile and 
less densely packed solvent molecules (Bhat & Blow, 
1982; Wang, 1985). The Wang procedure is very 
widely used in protein crystallography; once the pro- 
tein envelope has been defined a process of density 
flattening in the solvent region is found to be effect- 
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ive for phase extension and refinement. It can 
also be used to resolve the phase ambiguity when 
single-isomorphous replacement or one-wavelength 
anomalous-scattering techniques are used. 

Another approach is based on the observation that 
the density in the protein region is not only higher on 
average than in the solvent region but that it also has 
greater variability (Reynolds et al., 1985). Thus, in 
the protein regions there is found both the highest 
density, corresponding to atomic peaks, but also the 
lowest density in regions most remote from atomic 
centres. It is worth noting that the Wang procedure 
does contain this condition, albeit in a rather weak 
form. In the Wang process the local average density 
is formed but, before that, all negative density in the 
map is replaced by zero. Since the negative density is 
going to occur mainly, or perhaps only, in the pro- 
tein region this has the effect of increasing the con- 
trast between protein and solvent regions when the 
local averaging is carried out. A technique for 
finding the protein envelope at 4 A resolution for the 
structure of tumour necrosis factor based on the 
variability of density has been reported by Jones, 
Walker & Staurt (1991) and it gave a better defi- 
nition of the protein region than the Wang method 
did. This structure, with space group P3~21, contains 
six protein units, each with 157 amino acids in the 
asymmetric unit so it is clear that the characteristics 
of protein maps being used in this application are 
valid for structures of this size and with data of this 
resolution. 

This led us to consider a new FOM, 

V F = E ~  -7 p i  (p ;2  -- P ,  2), (1) 
i 

where /9' is the map density with negative regions 
made equal to zero and p~ and p~2 are the average 
values of,o' and p,2 in a sphere of radius R surround- 
ing the grid point i. The term in parentheses in (1) is 
the local variance of p', V/. In calculating VF we 
used a procedure, also suggested by Leslie (1987), 
which consists of the following steps. 

(i) Calculate an E map with phases from the 
direct-methods program but with the origin term 
E(0) removed. 

(ii) Replace all negative density by zero to give p'. 
The removal of the origin term E(0) from the map 
increases the volume of negative density, which will 
be mostly in the protein region. This increases the 
contrast in average density between the protein and 
solvent regions when negative density is replaced by 
zero. 

(iii) By Fourier transformation find E'(h) and 
G'(h), the Fourier transforms of p' and p,2, respec- 
tively. 

(iv) Multiply E'(h) and G'(h) by the Fourier trans- 
form of a sphere of chosen radius R, O(h). 

Table 1. Values of  VF (1)for  different resolutions of  
aPP and with different random mean phase errors 

(MPE~) applied to calculated data 

The upper figures ( × 10 2) are obtained from the accurate calcula- 
tion and the lower (in parentheses) from the approximation using 
the averages in boxes of  size approximately 2 x 2 x 2 A. 

Resolution (A) 
MPE(~') 1.0 1.5 2.0 2.5 

0 7315 821 270 159 
(3753) (1501) (718) (340) 

- 20 6706 763 251 149 
(3199) (1303) (623) (302) 

40 4660 579 197 127 
(1872) (802) (406) (225) 

60 3609 487 177 117 
(1326) (589) (329) (192) 

80 2972 413 169 110 
(1234) (552) (318) (186) 

(v) With E'(h) Q(h) and G'(h) Q(h) as Fourier 
coefficients calculate p-7 and p,2. 

(vi) Using the values of p-~ and p,2 calculated at 
grid points evaluate VF. 

The first test of VF was made with aPP, truncating 
the data to different resolutions and with random 
errors with different MPE's imposed on the calcu- 
lated phases. Trial and error showed that a value of 
R = 5/k gave reasonable results and this value is 
used throughout all the tests which we describe. The 
results are shown in Table 1 and it will be seen that 
the principle of the VF FOM is sound and that it 
sharply discriminates in favour of sets of phases with 
lower MPE's. 

The procedure described above requires five fast 
Fourier transforms (FFT's) but we have also 
explored a simpler approach in which only one FFT 
is required. The original density map is divided into 
parallelepiped-shaped boxes with edges of dimension 
b_etween 1 and 2 A and within each box the values of 
,o' and V' are calculated by direct summation over all 
the contained grid points. The results of this approxi- 
mate calculation are also shown in parentheses in 
Table 1. While the absolute values of VF are smaller, 
because the summation includes fewer terms, the 
values still discriminate well in favour of smaller 
MPE's. 

Tests with SA YTAN phase sets 

In the preliminary tests of VF, described above, we 
used the complete data set out to the required resolu- 
tion and applied errors randomly to the phases. The 
situation with phase sets from a direct-methods 
approach is quite different; firstly there will only be a 
subset of large I El's with estimated phases and 
secondly the phase errors, A~o(h), which come from 
direct methods tend to be heavily correlated. This 
comes about because of the well known three-phase 
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relationships, 

~ o ( h )  - ~ o ( k )  - ~o(h  - k )  = 0 .  ( 2 )  

Phases derived by the use of the tangent formula, 
whether they are close to being correct or not, tend 
to obey relationship (2) so that, 

{~(h) + a~(~.)} - {~(k)  + a~ (k ) }  

- {q~(h- k) + A~o(h - k)}--- 0. (3) 

Subtracting (2) from (3) gives, 

A~0(h) - A~0(k)- dq~(h- k) =0 ,  (4) 

which clearly shows the correlation between the 
phase errors. This correlation will be less strong for 
proteins where the three-phase relationship does not 
hold very strongly and S A Y T A N ,  which includes 
components other than the normal tangent formula, 
also gives a weaker phase-error correlation. 

The net effect of the patterns of phases which 
come from a direct-methods approach is that they all 
tend to give peaky maps; in a substantially correct 
map the peaks will show the positions of the atoms 
but in an incorrect map they can be in other places in 
the cell. Sometimes they will fall close to symmetry 
elements and will, therefore, be in regions forbidden 
by stereochemical considerations - for example, an 
atom less than 0.7 A from a twofold axis will be less 
than 1.4/k from its symmetry-related partner. To 
take account of this we decided to strengthen VF by 
converting it to the form, 

" ' 7  / - -  t V F ' =  2piV~ - •p(rVj, (5) 
/ f 

where the first sum includes the allowed grid points 
and the second sum the forbidden ones. This form of 
FOM was applied to 400 sets of phases derived by 
S A Y T A N  from 0.98 A data for aPP. In running 
SA Y T A N  there were employed 800 large IE~'s and 
200 small ones. Three of the phase sets had 
unweighted MPE's in the range 38-40 °. Table 2 lists 
the VF' values for the three good sets and a selection 
of others. It can be seen that with high-resolution 
data and MPE's about 40 ° good phase sets can 
readily be identified by VF' even using the approxi- 
mate method of density averaging in boxes. The 
three good sets had the highest values of VF' and 
were appreciably better than any others. 

The next step was to repeat the VF' test on phase 
sets produced when the aPP data were truncated to 
2/k. In this case SA Y T A N  selected 600 large iEl's 
and 200 weaker ones and 23 of the 1000 phase sets 
generated had MPE's in the range 62-71 ° and were 
expected to contain useful structural information. 
We found that calculating VF' by both the simplified 
and accurate procedures did not identify the better 
phase sets. While they did have values of VF' much 

Table 2. Values of  VF' (5) calculated for  good phase 
sets and a selection o f  poor phase sets from a 

SA Y T A N  run for aPP with data resolution 0.98/k 

The a p p r o x i m a t e  me thod  o f  averaging  in boxes was used. 

Phase set Mean  phase  V F '  
n u m b e r  e r ror  (~) ( x  10 1) 

I 84 109 
2 84 104 
3 81 95 
19 39 187 
23 82 139 
36 84 84 
44 80 87 
52 78 87 
103 85 135 
107 84 140 
117 83 34 
134 83 134 
300 40 168 
347 38 166 

higher than the average for the 1000 trials, for many 
poor phase sets the values were as high or even 
higher. 

It is obvious that the problem of distinguishing 
phase sets with MPE's in the range 60-70 ° from 
those in the range 80-87 ° is going to be much more 
difficult than when the good phase sets have an MPE 
of 40 ° . To overcome these difficulties we once again 
considered the properties of maps corresponding to 
good and poor phase sets. For a perfect set of 
phases, but for the effect of Fourier series termi- 
nation, there would be no negative density and we 
might expect that maps with poor phases have 
greater negativity than maps with good phases. 
However, ~, the average density over the whole cell, 
is a structure-invariant quantity and this means that 
when we replace negative density by zero the 
resultant average modified density over the whole 
cell, p', will tend to be bigger for an incorrect set of 
phases than for a correct set. This will tend to 
enhance the value of VF' for an_incorrect phase set. 
On the other hand the value of p 2  is also a structure 
invariant quantity and removing negative density in 
this case makes p,2 and also V' smaller for a poor set 
of phases. With these considerations in mind we 
produced a final normalized form of the FOM, 

V F O M  = V/ - ~ P'r V/  /p" V', (6) 
f 

where in the divisor the average and the variance are 
for the whole cell. This expression was used for the 
1000 phase sets produced by SA Y T A N  for the 2 A 
data of aPP and in Table 3 there is shown the top of 
the list of values of VFOM in ranking order. It is 
remarkable that 22 of the 23 best phase sets appear 
at the top of the list, even those with 71 ° MPE, 
although there is poor contrast between values of 
VFOM for the better phase sets and the rest. 
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Table 3. The top of  the VFOM (6) ranking order for 
phase sets from SAYTAN for aPP with 2 A data 

(R=5A) 
Rank Mean phase error VFOM 

number ( ' )  ( x  10 6) 

1 62 0.3032 
2 63 0.3027 
3 64 0.3025 
4 63 0.3022 
5 63 0.3022 
6 63 0.3021 
7 63 0.3021 
8 66 0.3021 
9 67 0.3017 
10 66 0.3016 
11 66 0.3013 
12 66 0.3013 
13 66 0.3010 
14 71 0.3000 
15 63 0.2997 
16 66 0.2994 
17 63 0.2993 
18 64 0.2989 
19 63 0.2989 
20 71 0.2989 
21 82 0.2988 
22 66 0.2986 
23 64 0.2986 
24 85 0.2982 
25 74 0.2975 
26 82 0.2975 
27 84 0.2975 
28 84 0.2973 
29 83 0.2972 
30 82 0.2971 
31 81 0.2970 
32 87 0.2970 
33 82 0.2969 
34 85 0.2968 
35 68 0.2967 
36 82 0.2966 
37 82 0.2965 
38 82 0.2960 
39 82 0.2954 
40 87 0.2931 

A further test and discussion 

The results with VFOM for the 2 A aPP phase sets 
are somewhat better than those obtained by 
Mukherjee & Woolfson (1993) with modified con- 
ventional FOM's. However, the bases of the conven- 
tional FOM's are the relationships which exist for 
small structures, which are known to hold badly for 
larger structures. In this context aPP may well be 
near the limit at which they have any useful validity. 
On the other hand VFOM is based on the properties 
of the maps of protein structures, that they are 
divided into distinct regions with distinct properties, 
and it is known that these properties are valid and 
useful even for very large structures. 

To check on this we applied VFOM to phases 
derived for 727 large E's by the application of 
SA YTAN to 1.5 ,~ data for 2Zn-insulin (Mukherjee 
& Woolfson, 1994). Of the 1000 sets of phases which 
produced by SA)'TAN 15 had MPE less than 70 ~ 
and as will be seen from Table 4 these are comforta- 

Table 4. The top of  the VFOM (6) ranking order for 
phase sets from SA YTAN for 2Zn-insulin with 1.5/~ 

data (R = 5 ~) 

Rank Mean phase error VFOM 
number (~) ( x  10 6) 

1 65 0.9130 
2 64 0.9120 
3 65 0.9105 
4 65 0.9099 
5 66 0.9097 
6 66 0.9094 
7 66 0.9094 
8 64 0.9074 
9 66 0.9037 
10 66 0.8966 
11 67 0.8944 
12 68 0.8934 
13 61 0.8907 
14 71 0.8895 
15 68 O.889O 
16 84 0.8723 
17 84 0.8717 
18 84 0.8624 
19 85 0.8610 
20 69 0.8584 
21 84 0.8574 
22 84 0.8508 
23 84 0.8485 

bly selected by VFOM. Conventional figures of  merit 
were quite useless for this structure so here we have a 
situation where the statistical relationships encapsu- 
lated in SA YTAN are able to generate potentially 
useful phase sets but tests based on similar principles 
cannot distinguish the good sets from the bad ones. 
Trials with SA YTAN for structures of similar size to 
2Zn-insulin, but not containing heavier atoms, have 
given larger phase errors of  order 72 ~. We suspect 
that it is the presence of the Zn atoms which gives 
the comparatively favourable SA YTAN outcome for 
2Zn-insulin. 

We have previously mentioned the log-likelihood 
criterion based on maximum-entropy extrapolation 
(Gilmore, Henderson & Bricogne, 1991), which has 
also been applied to the 0.98 A resolution phase sets 
from SA YTAN. It is interesting to note that in this 
procedure only the 117 phases corresponding to 
reflections of  less than 2 A resolution were kept fixed 
while the phases of the others were subjected to 
improvement by maximization of entropy. It seems 
that a better comparison with the present work could 
be made if VFOM was applied to phase sets which 
had previously been subjected to phase refinement 
but this has not been done. Another point of  com- 
parison between the log-likelihood criterion and 
VFOM involves the contrast between the FOM 
values for good phase sets and others. The log- 
likelihood criterion gives extreme differences so that 
good phase sets are clearly distinguishable whereas it 
will be clear from Tables 3 and 4 that the differences 
of VFOM for good and bad sets are small. This may 
be a cause for concern although the tests reported 
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here were valid ones with observed data and for two 
structures with quite different characteristics. 

It is likely that the maximum-entropy-based FOM 
would also work at lower resolutions since entropy 
maximization is a process which has been applied 
successfully with low-resolution data. Its main 
drawback is that it is very demanding on computer 
resources with a single cycle of refinement requiring 
14 FFT's  compared with five FFT's  for VFOM. The 
CPU time for VFOM evaluation for aPP was under 
l min per set or about 15 h for the 1000 phase sets 
on a HP730 workstation. While this is quite time 
consuming it is worthwhile if it leads to the solution 
of a major structure. 

Given the availability of an FOM which is valid 
for protein phase sets the next consideration is 
whether information-containing phase sets can actu- 
ally be obtained on which to apply it. Our experience 
is that phase sets with MPE's  in the range 64-72 + can 
be obtained for proteins with up to about 200 amino 
acids in the asymmetric unit. If an FOM is available 
which can recognise these, the the boundary of the 
usefulness of direct methods will have been moved 
from what we can recognize to what we can actually 
produce. 
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